Note

The Number of Small Semispaces of a Finite Set of Points in the Plane

Noga Alon*

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

AND

E. Györi

Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary

Communicated by the Managing Editors

Received May 22, 1984

For a configuration S of n points in the plane, let $g_k(S)$ denote the number of subsets of cardinality $\leq k$ cut off by a line. Let $g_{k,n} = \max\{g_k(S): |S| = n\}$. Goodman and Pollack (*J. Combin. Theory Ser. A* **36** (1984), 101–104) showed that if k < n/2 then $g_{k,n} \leq 2nk - 2k^2 - k$. Here we show that $g_{k,n} = k \cdot n$ for k < n/2. © 1986 Academic Press. Inc.

Let S be a finite set of points in the plane. Following Goodman and Pollack [GP2] we call the intersection of S with a half plane a semispace of S. A semispace of S of cardinality k is called a k-set of S. Let $f_k(S)$ denote the number of k-sets of S and put $g_k(S) = \sum_{i=1}^k f_i(S)$.

Define

$$g_{k,n} = \max\{g_k(S): |S| = n\}.$$

Thus $g_{k,n}$ is the maximal number of $(\leq k)$ -sets of n points in the plane. Since $g_{k,n} = g_{n-k,n}$ we may restrict our attention to the case $k \leq n/2$.

Goodman and Pollack [GP2] considered the problem of estimating $g_{k,n}$ and proved that if k < n/2 then $g_{k,n} \le 2nk - 2k^2 - k$.

* Research supported in part by the Weizmann Fellowship for Scientific Research.

In this note we deterime $g_{k,n}$ precisely for all k < n/2, by proving:

THEOREM 1. For k < n/2, $g_{k,n} = k \cdot n$

We have two proofs of Theorem 1; a combinatorial one and a geometric one. Since the first proof is more general we present it in detail and only sketch the second. Our combinatorial proof is based on the ideas of [GP2].

The *n* vertices of any convex polygon in the plane show that $g_{k,n}$ is at least the quantity mentioned in the theorem. To prove the upper bound we first note that we may assume that the points of S form a simple configuration, i.e., no three points of S are collinear and no two connecting lines (i.e., lines determined by two points of S) are parallel. This follows from the fact that a small perturbation of S will not decrease $g_k(S)$.

Following [GP2] we consider a more general combinatorial problem. We associate with S a sequence of permutations on the n points of S as follows. Choose a directed line L, which is not orthogonal to any connecting line of S, and project the points of S orthogonally onto L. Let P_0 denote the order of these projections on L. Now rotate L counterclockwise. Whenever L passes a direction orthogonal to a connecting line determined by the points $a, b \in S$ the order of the projected points on L is changed by the adjacent transposition (a, b).

After 180° the points fall on L in the reverse order. In this way (after 360°) we obtain a cyclic sequence of permutations $P(S) = P_0, P_1, ..., P_{2N} = P_0$, where $N = \binom{n}{2}$ and

- (1) P_i and P_{i+N} are in reverse order (from here on addition of indices is taken modulo 2N);
 - (2) P_{k+1} differs from P_k by an adjacent transposition (=switch).

Note that a k-set of S occurs as an initial k-segment of some P_i (and hence as a terminal k-segment of P_{i+N}). As a matter of fact $f_k(S)$ is precisely the number of switches in position k in P, i.e., the number of switches between the kth and the (k+1)st indices, since each such switch creates exactly one new k-set. This number equals, of course, the number of switches in position n-k in P.

Call a sequence of permutations P satisfying (1) and (2) an n-sequence. (Note that in [GP2] an n-sequence is half of our n-sequence.) For $k \le n/2$ let $F_k(P)$ denote the number of switches in position k in P, put $G_k(P) = \sum_{i=1}^k F_k(P)$ and define

$$G_{k,n} = \max\{G_k(P): P \text{ is an } n\text{-sequence}\}.$$

Our result clearly follows from the following.

Claim 2. For k < n/2, $G_{k,n} \le n \cdot k$. Note that since $n \cdot k \le g_{k,n} \le G_{k,n}$ for k < n/2, the last claim implies;

THEOREM 3. For k < n/2, $g_{k,n} = G_{k,n} = k \cdot n$.

As shown above every simple configuration is associated with an *n*-sequence. The converse, however, is not true (see [GP1]). Hence Theorem 3 is more general than Theorem 1.

Proof of Claim 2. Let b be a fixed point. The total number of switches involving b is precisely 2n-2 (twice with any other point). If b occurs in a switch in position $i \in (1, 2, ..., k)$ it also occurs in a switch in position n-i. If i < j < n-i then, by continuity, b occurs in at least two switches in position j (one somewhere between the switch in position i and this in position n-i and one somewhere between the switch in position n-i and this in position i). Thus, any point occurs in at most 2n-2-2(n-2k-1)=4k switches in positions $\{1, 2, ..., k\} \cup \{n-k, ..., n-1\}$. The total number of switches in these positions is half of the sum of occurrences of points in such switches, i.e., $\leq \frac{1}{2} \cdot n \cdot 4k = 2nk$. The total number of switches in the first k positions is precisely half of this quantity, i.e., $\leq n \cdot k$. This completes the proof of Claim 2 and hence of Theorems 1 and 3.

- Remarks. 1. Let S be a set of n points in general position in the plane and suppose k < n/2. For $a, b \in S$ let l = l(a, b) be the directed line from a to b and let $N^+(l)$ denote the number of points of S in its positive side. Erdös, Lovász, Simmons and Straus [ELSS] denoted by G_k the directed graph on the set of vertices S whose edges are all segments ab, where $a, b \in S$ and $N^+(l(a,b)) = k$. One can easily check that the number of k-sets of S is precisely the number of edges of G_{k-1} (= number of edges of G_{n-k-1}). It is also easy to see (analogously to the proof of Lemma 3.1 of [ELSS]) that if $a \in S$ is incident with an edge of G_i and i < j < n-2-i then a is also incident with at least two edges of G_j . Thus the total number of edges incident with a in $G_0 \cup G_1 \cup \cdots \cup G_{k-1} \cup G_{n-k-1} \cup \cdots \cup G_{n-2}$ is at most 2n-2-2(n-2k-1)=4k. Therefore the total number of edges of $G_1 \cup \cdots \cup G_{k-1}$ is $\leq n \cdot k$. This yields another proof of Theorem 1 (but not of the more general Theorem 3).
- 2. The problem of determining or estimating $f_{k,n} = \max\{f_k(S) : S \text{ is a configuration of } n \text{ points in the plane}\}$ is much more difficult than the corresponding one for $g_{k,n}$. However, as is easily checked, $2 \cdot g_{n/2,n} = n(n-1) + f_{n/2,n}$ (for even n), i.e., the two problems are equivalent (and seem to be difficult) for k = n/2 (see [ELSS, Lo]).

By the results of Stanley [St], Lascoux and Schützenberger [LS] and Edelman and Greene [EG] there is a surprising one to one correspon-

dence between *n*-sequences and Standard Young Tableaux of shape (n-1, n-2,..., 1) which might help in tackling this problem.

REFERENCES

- [EG] P. EDELMAN AND C. GREENE, Combinatorial correspondences for Young tableaux, balanced tableaux and maximal chains in the Bruhat order of S_n , in Combinatorics and Algebra, Contemporary Math., Vol. 34, Amer. Math. Soc., 1984.
- [ELSS] P. Erdős, L. Lovász, A. Simmons, and E. G. Straus, Dissection graphs of planar point sets, in "A Survey of Combinatorial Theory" (J. N. Srivastava et al., Eds.), pp. 139–149, North-Holland, Amsterdam 1973.
- [GP1] J. E. GOODMAN AND R. POLLACK, On the combinatorial classification of nondegenerate configurations in the plane, J. Combin. Theory, Ser. A 29 (1980), 220–235.
- [GP2] J. E. GOODMAN AND R. POLLACK, On the number of k-subsets of a set of n points in the plane, J. Combin. Theory Ser. A 36 (1984), 101-104.
- [Lo] L. Lovász, On the number of halving lines, Ann. Univ. Sci. Budapest, Eötvös, Sect. Math. 14 (1971), 107-108.
- [LS] L. LASCOUX AND M. P. SCHÜTZENBERGER, Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I 295, 629-633.
- [St] R. STANLEY, On the number of reduced decompositions of elements of Coxeter groups, *Europ. J. Combinatorics* 5 (1984), 359–372.